Exercise 47

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a linear equation that models the data.

x	0	5	10	15
$g(x)$	5	-10	-25	-40

Solution

This table represents a linear function because x increases by 5 in each entry to the right, and $g(x)$ increases by -15 in each entry to the right. Two points on this line are

$$
(0,5) \text { and }(5,-10) \text {. }
$$

The general equation for a line is

$$
y=m x+b .
$$

The first point says that when $x=0, y=5$.

$$
5=m(0)+b
$$

The second point says that when $x=5, y=-10$.

$$
-10=m(5)+b
$$

This is a system of two equations with two unknowns that can be solved.

$$
\left\{\begin{aligned}
b & =5 \\
5 m+b & =-10
\end{aligned}\right.
$$

Plug the value for b into the second equation.

$$
5 m+(5)=-10
$$

Solve for m.

$$
\begin{aligned}
5 m & =-15 \\
m & =-3
\end{aligned}
$$

Now that m and b have been solved for, the line is known.

$$
y=-3 x+5
$$

